Лабораторная работа №2

ТЕРМИЧЕСКАЯ ОБРАБОТКА УГЛЕРОДИСТОЙ СТАЛИ

Цель работы – ознакомить студентов с практикой термической обработки стали и полученными структурами стали.

Методические указания

Работа состоит из двух частей: практики термической обработки углеродиской стали и микроанализа углеродистой стали после термической обработки.

При выполнении термической обработки студенты устанавливают зависимость твердости стали от скорости охлаждения при закалке и температуры отпуска.

Для проведения работы берутся две марки стали: доэвтектоидная и заэвтектоидная, которые подвергаются закалке и отпуску.

Правильное проведение закалки стали сводится к выбору режима, куда относятся следующие параметры: оптимальная температура закалки, время нагрева, скорость охлаждения.

По условиям нагрева принято различать полную и неполную закалку. При полной закалке сталь переводят в однофазное аустенитное состояние, т.е. нагревают выше критических температур A_{c3} или A_{cm} , при неполной закалке сталь нагревают до межкритических температур - A_{C1} A_{C3} A_{cm} (рис. 3).

Доэвтектоидные стали подвергают полной закалке, при этом оптимальной температурой нагрева является температура A_{C3} +(30-50°), так как она обеспечивает получение при нагреве мелкозернистого аустенита и, соответственно, после охлаждения — мелкоигольчатого мартенсита. Неполная закалка для таких сталей не рекомендуется, потому что в структуре стали, наряду с мартенситом, бедет присутствовать мягкий феррит, который понижает твердость и прочность стали. Заэвтектоидную сталь подвергают неполной закалке. Нагрев стали выше A_{cm} нецелесообразен, так как ведет к перегреву, а значит, к повышению хрупкости стали. При закалке с температурой выше A_{C1} , но ниже A_{cm} получается мелкоигольчатый мартенсит с мелкими включениями цементита. Цементит — очень твердая составляющая, поэтому твердость и износоустойчивость закаленной стали повышается.

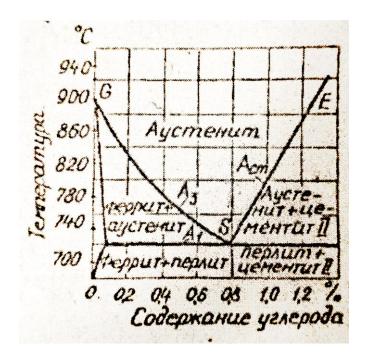


Рис. 3. Левый нижний угол диаграммы состояний системы железо цементит.

Время нагрева стали под закалку определяется временем, необходимым для превращения исходной структуры в аустенит.

Общее время нагрева складывается из времени нагрева до заданной температуры $\tau_{\scriptscriptstyle H}$ и времени выдержки при этой температуре $\tau_{\scriptscriptstyle g}$:

$$\tau_{o\delta u_{\ell}} = \tau_{H+} \tau_{\epsilon} \ (1)$$

Величина τ_H зависит от нагревающей способности среды, от размеров и форм деталей, от способа их укладки в печи; τ_g зависит от скорости фазовых превращений, которая определяется степенью перенагрева выше критической точки и дисперсностью исходной структуры.

Практически величина τ_{ϵ} может быть принята равной 1 мин для углеродистых и 2 мин для легированных сталей. При нагреве крупных деталей величиной τ_{ϵ} можно пренебречь.

Так как время нагрева зависит от многих факторов и на практике колеблется от 1-2 мин (нагрев мелких деталей в соли) до многих часов (нагрев крупных деталей тяжелого машиностроения в печи), точно установить время нагрева можно лишь опытным путем для данной детали в данных конкретных условиях. Приближенное значение рассчитывается по формуле:

$$\tau_{\scriptscriptstyle H} = 0, 1D_1K_1K_2K_3$$
 (2)

Где D_1 - размерная харектеристика изделия (минимальный размер максимального сечения), мм;

 K_1 - коэффициент среды (для газа – 2, соли – 1, металла – 0,5);

 K_2 - коэффициент формы (для шара — 1, цилиндра — 2, параллелепипеда — 2,5, пластины - 4);

 K_3 – коэффициент равномерности нагрева (всесторонний нагрев – 1, односторонний - 4).

Указанная методика расчета τ_{μ} относится к нагреву примерно до 800-900°С.

В таблице 2 предоставлены нормы нагрева стали на один миллиметр диаметра для круга и на один миллиметр толщины для квадрата при термической обработке в лабораторных электрических печах.

Температура нагрева, °С	Продолжительность нагрева, мин	
нагрева, С	Круг	Квадрат
600	2	3
700	1,5	2,2
800	1,0	1,5
900	0,8	1,2
1000	0,4	0,6

Таблица 2

Скорость охлаждения стали определяется получением требуемой структуры. В зависимости от скорости охлаждения различают два принципиально отличных друг от друга превращения в стали:

- диффузионное превращение, при котором происходит распад аустенита на феррито-цементитную смесь:

$$Fe_{\gamma}(c) \rightarrow Fe(c) + Fe_3C$$
, (3)

- бездиффузионное, при котором происходит превращение аустенита в мартенсит:

$$Fe_{\gamma}(C) \rightarrow Fe_{\alpha}(C)$$
 (4)

Наименьшая скорость охлаждения, при которой происходит превращение аустенита в мартенсит, является критической скоростью закалки. При охлаждении стали со скоростью ниже критической (рис. 4) ($V_1 < V_2 < V_3 < V_{\kappa p}$) происходит превращение (3), в результате которого образуется феррито-цементитная смесь (перлит, сорбит, троостит). Эти структуры отличаются друг от друга степенью дисперсности цементита. Чем больше скорость охлаждения, тем выше дисперсность

феррито-цементитной смеси. При переохлаждении ($V_{oxn} < V_{\kappa p}$), когда невозможны диффузорные процессы, происходит бездиффузионное (4) превращение аустенита в мартенсит, при котором не наблюдаются изменения состава фаз. В решетке мартенсита остается то же количество атомов углерода, которое имелось в решетке аустенита. При мартенситном превращении происходит лишь переход кубической гранецентрированной решетки аустенита в кубическую (тетрагональную) объемноцентрированную решетку мартенсита.

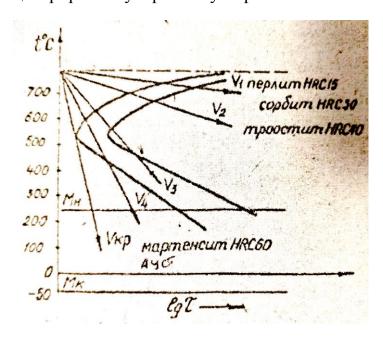


Рис. 4 Диаграмма изометрического превращения аустенита

Поэтому мартенсит представляет собой пересыщенный твердый раствор углерода в α -железе. Мартенситное превращение происходит в интервале температур $M_H - M_K$. Температура мартенситного превращения не зависит от скорости охлаждения, а зависит от химического состава стали. При увеличении содержания углерода в углеродистой стали температуры M_H и M_K понижаются, и в сталях, содержащих более 0,4% углерода, температура конца мартенситного превращения M_K становится ниже нормальной, поэтому структура закаленной стали будет состоять из мартенсита и небольшого количества остаточного аустенита. Таким образом, в зависимости от скорости охлаждения стали получаются различные структуры, имеющие различные свойства.

Мартенсит обладает наибольшей твердостью и в то же время хрупок. Твердость мартенсита составляет HRC 60-65. Чем больше в стали углерода, тем выше твердость мартенсита.

Троостит имеет меньшую твердость (HRC 40-45) и прочность, чем мартенсит, но обладает большей вязкостью. Его твердость HRC 25-35.

Перлит обладает наименьшей твердостью (НКС 15-20) и прочностью.

Во второй части работы студенты изучают структуру стали после различных видов термической обработки.

Принято различать четыре основных вида термической обработки стали: отжиг, нормализацию, закалку и отпуск.

Отжиг заключается в нагреве стали до температуры выше критических точек A_{C3} (полный отжиг) или A_{C1} (неполный отжиг) с последующим медленным охлаждением стали. Скорость охлаждения соответствует лучу V_1 (см. рис.4). В результате отжига получается перлитная структура, сопровождаемая ферритом (в доэвтектоидной стали) и цементитом (в заэвтектоидной стали). Отжиг Придает стали высокую пластичность и низкую твердость.

Перегрев стали при отжиге приводит к значительному росту аустенитного зерна, а при последующем медленном охлаждении — к образованию видманштеттовой структуры. Например, если сталь, содержащую 0,4% С, подвергнуть отжигу при 1000-1100°С, то несмотря на те же фазы, величина зерен, их форма и расположение будут иными (рис. 5). Для видманштеттовой структуры характерно выделение феррита в виде игл (пластин), расположенных внутри перлита по определенным кристаллографическим плоскостям. Сталь с такой структурой имеет более низкую вязкость. Перегретую сталь можно сделать снова мелкозернистой если подвергнуть её полному отжигу при оптимальной температуре нагрева.



Рисунок 5. Сталь (0,4% C) после отжига при 1000°C. Феррит и перлит (видманштеттовая структура) х200.

В заэвтектоидной стали после неполного отжига, т.е. нагрева до температуры A_{c1} +(20-50°C) и длительной выдержки с последующим медленным охлаждением вместе с печью, образуется структура, состоящая из перлита и вторичного цементита, причем цементит перлита и вторичный цементит находятся в виде зерен. Образуется зернистый перлит. Сталь со структурой зернистого перлита обладает более низкой

твердостью и прочностью, но повышенной вязкостью и лучшей обрабатываемостью режущим инструментом по сравнению со сталью, имеющей структуру пластинчатого перлита, поэтому заэвтектоидные стали отжигают на зернистый перлит.

Нормализация состоит в нагреве стали до температуры выше критической точки A_{C3} (или A_{cm}) с последующим охлаждением на воздухе. В результате нормализации получается мелкопластинчатый перлит (сорбит). Скорость охлаждения стали при нормализации соответствует лучу V_2 (см. рис.4). В результате нормализации сталь, содержащая более 0,3% углерода, несколько упрочняется, пластичность ее понижается, сталь с меньшим содержанием углерода остается мягкой, пластичной.

Закалка стали на мартенсит приводит к резкому возрастанию твердости, прочности, износоустойчивости при сильном снижении пластичности. Скорость охлаждения при закалке на мартенсит (см. рис. 4)должна быть больше V_{KP} . Мартенсит имеет характерное игольчатое строение. Размеры игл (пластин) мартенсита определяются размером исходного зерна аустенита. Чем мельче зерно аустенита, тем меньше протяженность иглы мартенсита. В связи с этим, чем выше температура нагрева стали под закалку, тем крупнее будут иглы мартенсита и выше хрупкость. На рис.6 показана структура стали, содержащей 0,4% C, после нормальной закалки при 860° С в воде. Получившаяся структура — мелкоигольчатый мартенсит.

На рис.7 показана структура стали, содержащей 0,4% C, после закалки при 1000° С в воде. Видны крупные иглы мартенсита и их различая направленность в каждом зерне.

Под отпуском понимают нагрев закаленной стали на мартенсит до температуры ниже критической точки A_{C1} с последующим охлаждением. Целью отпуска является устранение внутренних напряжений и получение требуемых механических свойств.

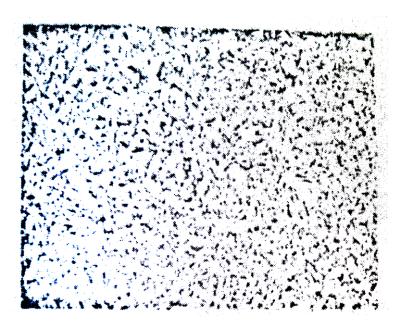


Рис.6. Сталь $(0,4\% \ C)$ после нормальной закалки при 860° С в воде. Мелкоигольчатый мартенсит х 200.

Рис.7. Сталь $(0,4\% \ C)$ после закалки при 1000° С в воде. Крупноигольчатый мартенсит х 200.

При отпуске закаленной стали наблюдается четыре превращения:

- 1. При нагреве в интервале температур 80-180°С происходит уменьшение тетрагональности решетки мартенсита в связи с выделением из нее атомов углерода в виде высокодисперсных, еще не обособившихся частиц карбида железа. Образуется мартенсит отпуска.
- 2. При нагреве в интервале температур 200-300°C остаточный аустенит, который всегда в том или ином количестве содержится в закаленной стали, превращается в отпущенный мартенсит.
- 3. При нагреве в интервале температур 300-400°C происходит полное превращение мартенсита в феррито-цементитную смесь, при этом образуется троостит отпуска.

При нагреве выше 400°С происходит укрупнение (коагуляция) мелких частиц цементита. При этом образуется сорбит отпуска.

Таким образом, тростит и сорбит можно получить не только на аустенита непосредственно закалкой, но и путем отпуска мартенсита, при этом структура троостита и сорбита отпуска зернистая, а не пластинчатая, как структура троостита и сорбита закалки. Троостит и сорбит отпуска имеют большую вязкость при той же прочности по сравнению с трооститом и сорбитом закалки.

В зависимости от температуры нагрева различают три вида отпуска: низкий, средний, высокий.

Низкий отпуск производится при температуре 150-200°С для уменьшения внутренних напряжений и повышения вязкости с сохранением высокой твердости: образующаяся структура в результате отпуска — отпущенный мартенсит (*HRC*≥60). Низкому отпуску обычно подвергают мерительный инструмент и режущий инструмент. На рис.8 показана структура заэвтектоидной стали, содержащей 1,2% *С* после закалки при 770°С в воде и последующего отпуска при 150°С. Структура состоит из мартенсита отпуска и зерен вторичного цементита.

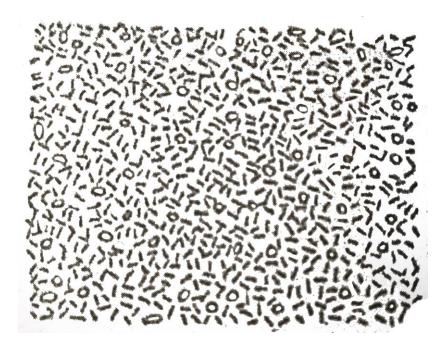


Рис.8. Сталь (1,2% C). Закалка при 770°C в воде и отпуск при 150°C. Мартенсит отпуска и цементит (схема микроструктуры).

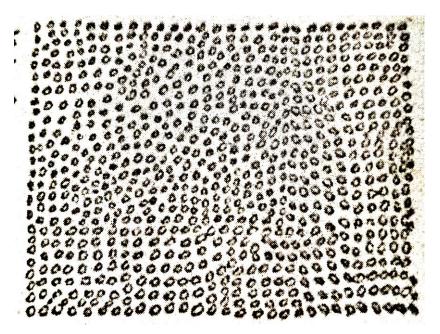


Рис.9. Сталь $(0,4\% \, \textbf{\textit{C}})$. Закалка при 860° С в воде и отпуск при 550° С. Сорбит отпуска (схема микроструктуры).

Средний отпуск производится при температуре 300-450°С. При этом происходит значительное понижение твердости, прочности, повышение вязкости и предела

упругости. Полученная структура отпущенной стали – троостит (*HRC* 40). Среднему отпуску подвергаются пружины и рессоры.

Высокий отпуск производится при 500-650°С. Цель высокого отпуска - получение высокой вязкости и пластичности при достаточной прочности. Микроструктура – сорбит (рис.9), твердость *HRC* 30.

Условия образования структурных составляющих определяется по диаграмме состояния $Fe - Fe_3C$ и C —образная кривой изометрического превращения аустенита. Изучение структуры стали после термической обработки производится на металлографическом микроскопе на заранее подготовленных образцах. Рисунок микроструктуры должен передавать характерные особенные структуры.

Оборудование и материалы: образцы углеродистой до- и заэвтектоидной стали диаметром 10-15мм, высотой 15-20 мм; печи с термоэлектрическими пирометрами, бачки с водой и маслом, щипцы, наждачная бумага, прибор Роквелла, металлографический стали после термообработки и альбом микрофотографий.

Порядок проведения работы

- I. Практика термической обработки.
- 1. Определить твердость образцов до закалки.
- 2. Провести закалку и нормализацию образцов по установленному режиму.
- 3. Определить твердость образцов после охлаждения.
- 4. Произвести отпуск закаленных в воде образцов.
- 5. Определить твердость отпущенных образцов.
- 6. Результаты измерений твердости образцов после закалки и отпуска занести в табл.3.

Таблица 3

Марка стали	
Размер образца	
температура нагревания, °C	,
время выдержки, мин	Закалка
охлаждающая среда	ļ
Твердость	
температура нагревания, °C	
время выдержки, мин	Отпуск
охлаждающая среда	
Твердость	
Структура	

7. Построить график измерения твердости в зависимости от скорости охлаждения для доэвтектоидной и заэвтектоидной стали.

- 8. Построить график изменения твердости в зависимости от температуры отпуска для доэвтектоидной стали.
- 9. Проанализировать экспериментальные кривые, показать влияние скорости охлаждения и температуры отпуска на твердость стали.
- 10. Составить отчет. В отчете поместить таблицу 3; описать превращения, происходящие в заданном сплаве при нагревании, охлаждении и отпуске; также построить графики зависимости твердости от скорости охлаждения и температуры отпуска. Сделать выводы.
- II. Микроанализ углеродистой стали после термической обработки.
- 1. Исследовать под микроскопом шлифы углеродистой стали после отжига, закалки и отпуска.
- 2. Каждую микроструктуру зарисовать. Указать содержание углерода в стали, вид термической обработки и ее режим, наименование структуры, увеличение микроскопа и травитель.
- 3. Составить отчет, в котором поместить рисунки микроструктур с соответствующими пояснениями.